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a b s t r a c t

For early detection of rolling element bearings (REBs) faults in contaminated signals, kurtosis-derived
indices are involved in the filtration process prior to demodulation. However, they were found either
sensitive to impulsive outliers or requiring many input arguments. In this study, a novel three-step
adaptive and automated filtration scheme using Gini index (GI) is proposed as an alternative to
kurtosis-based techniques to enhance the weak fault features and eliminate noise and interreferences
from the raw vibration signal. The proposed approach was tested using experimental signals with
different bearing faults. The filtered signals were greatly denoised and the fault impulses were
successfully isolated, which indicates the effectiveness of the proposed approach and the superiority
of GI over kurtosis-derived indices as a criterion for proper filter design for REBs fault detection.

© 2020 Published by Elsevier Ltd on behalf of ISA.

1. Introduction1

Rolling element bearings (REBs) are involved in about ev-2

ery industrial application because they are vital elements in the3

structure of about every rotating machinery [1]. As a conse-4

quence, REBs failure leads to a major machine breakdown in5

many cases [2]. Early detection of REBs faults and their surveil-6

lance are essential in predictive maintenance of critical appli-7

cations, such as energy systems and aerospace [3]. REBs fault8

classification (fault location identification) could provide use-9

ful information about failure root causes so that they may be10

eliminated, and more reliable designs may be developed.11

Vibration signals are successfully used to indicate the condi-12

tion of rotating machinery. However, REBs faults at early stages13

produce weak fault features in the vibration signal. Such weak14

features are usually overwhelmed with noise of nearby equip-15

ment to the extent that they are difficult to extract [4]. The16

situation becomes harsher in the case of multipart equipment17

such as in helicopter gearboxes [5]. The raw spectra of such18

vibration signals are typically crowded and have extremely low19

signal to noise ratios (SNRs) [6]; therefore, it is hard to identify20

the REBs fault characteristic frequencies (BCFs) within them.21

Each time a rolling element hits a localized defect, an im-22

pulse is naturally produced which excites the system resonances.23
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Hence, the success of a diagnostic technique is judged by its 24

ability to isolate these repetitive impulses [1]. There are inter- 25

ferences that disrupt the isolation of these impulses. Examples of 26

such interferences are the impulsive electromagnetic noise, the 27

periodic interference of the shaft rotation and its harmonics, and 28

gear meshing vibrations present in the case of gearboxes [7]. 29

Envelope analysis is the typically used technique to extract 30

these impulses through resonant band demodulation. It is based 31

on the fact that the occurrence frequency of these impulses 32

‘‘BCF’’ amplitude-modulates the bearing system resonance [6]. For 33

this technique to be successful, the proper resonant frequency 34

band must be initially identified [8]. The resonant band selection 35

becomes difficult due to the effect of the variation in the signal 36

transmission path and due to the existence of heavy noise [9]. 37

Traditionally, the selection of the useful resonant band was done 38

visually by inspecting the difference in the power spectral density 39

between a signal of a normal REB and the signal of a faulty one. 40

This approach requires a historical no-fault data [5]. Through the 41

past decade, the developed approaches were mainly based on 42

the blind selection of the useful resonant band for demodulation 43

through impulsiveness maximization of the filtered signal [5]. 44

Impulsiveness maximization is achieved using sparsity measures 45

of the signal, such as kurtosis and Shannon entropy. 46

One of the earliest techniques was the Antoni and Randall’s 47

kurtogram [10], in which the optimal band-pass filter was de- 48

termined through maximizing the spectral kurtosis (SK) of the 49

filtered signal. Bozchalooi and Liang [11] pointed out that kur- 50

tosis is sensitive to data outliers, so it may falsely indicate im- 51

pulsiveness. They alternatively proposed the smoothness index 52
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which possesses minimum values for maximum impulsiveness1

and showed to be less sensitive to outliers. Shannon entropy min-2

imization was successfully used in [12,13] for the same purpose.3

Tse and Wang [14] conducted a comparative study between the4

use of kurtosis, the smoothness index, and Shannon entropy. They5

found that the three measures give similar results based on their6

studied signals. McDonald et al. [15] found that kurtosis fails to7

distinguish between impulsive noise and fault repetitive impulses8

because the kurtosis of a single impulse may be higher than that9

of a train of impulses. They then proposed the correlated kurtosis10

(CK), which considers the impulse’s periodicity, to solve this prob-11

lem. Chen et al. [9] formulated an improved correlated kurtosis12

(ICK) to take the factor of the signal length into consideration.13

The main drawback of the CK and the ICK is that they require14

many input arguments, such as the correlation period which must15

be set equal to the BCF. This step is substantially impractical16

as information about which BCF, among all the BCFs, exists in17

the faulty REB’s signal is unknown. In case the information is18

available, then the fault location is already identified and there19

is no need for filtration.20

The former discussion indicates that the reliability of an auto-21

mated fault detection technique is conditioned by using a proper22

criterion to select the appropriate resonant band for demodula-23

tion. This work exploits Gini index (GI) as a potential alternative24

to overcome the problems arise from using other indices such25

as spectral kurtosis in incipient fault detection of REBs in noisy26

systems, e.g. helicopter gearbox, and wind turbines.27

2. Gini index (GI)28

GI is an economical wealth inequality measure that is latterly29

introduced to the field of REBs fault diagnostics [16]. It was first30

introduced in 1921 by Corrado Gini [17]. GI was also introduced31

in [18] as a more useful norm than kurtosis for an appropriate32

resonant band selection. The findings in [18] and [19] revealed33

the effectiveness of GI in extracting repetitive transients caused34

by faulty REBs. GI is found to be less sensitive than kurtosis35

to impulsive outliers caused by external impacts [18,19]. Hurley36

and Rickard [20] quantitatively compared several common spar-37

sity measures (including kurtosis and Shannon entropy) based38

on some desirable features and GI was found to have all these39

features. Hence, GI is adopted in this work as the filter selection40

criterion. GI is calculated according to the derived formula in [20]41

as in Eq. (1). The values of GI ranges from 0 to 1 [16].42

Given a vector x = [x (1) , . . . , x (N)] with its elements re-43

ordered and represented by: x[k] for k = 1, 2, . . . ,N , where44 ⏐⏐x[1]⏐⏐ ≤
⏐⏐x[2]⏐⏐ ≤, · · · ,≤

⏐⏐x[N]
⏐⏐, then:45

GI (x) = 1 − 2
∑ ⏐⏐x[k]⏐⏐

x1
×

⎛⎜⎝N − k +
1
2

N

⎞⎟⎠ (1)46

where x1 is the l1 norm of x.47

2.1. Gini index versus kurtosis48

Simulated primary signals were generated in this work to test49

the response of GI and to compare it with the response of kurtosis50

to the features in these signals.51

The first signal (Sig 1) is a DC signal with constant amplitude52

which equals unity and is illustrated in Fig. 1. The second signal53

(Sig 2) contains a single pulse and is illustrated in Fig. 2. The54

third signal (Sig 3) contains two pulses and is illustrated in Fig. 3.55

The fourth signal (Sig 4) contains a pulse train consisting of nine56

pulses and is illustrated in Fig. 4. The fifth signal (Sig 5) contains57

white Gaussian noise with −15 dB signal to noise ratio (SNR) and58

Fig. 1. Sig 1: a DC signal.

Fig. 2. Sig 2: a single pulse.

Fig. 3. Sig 3: two pulses.

Fig. 4. Sig 4: a pulse train.

is illustrated in Fig. 5. The last signal (Sig 6) is a sinusoid with 59

5 Hz frequency and 1 kHz sampling frequency and is illustrated 60

in Fig. 6. The value of GI for each of these signals is calculated and 61

listed against the values of kurtosis in Table 1. 62
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Fig. 5. Sig 5: white Gaussian noise with SNR = −15 dB.

Fig. 6. Sig 6: a sinusoid.

Table 1
GI vs. kurtosis of the six test signals.
Signal Kurtosis GI

Sig 1: DC NaN 3.3307 × 10−16

Sig 2: a single pulse 98.0101 0.4925
Sig 3: two pulses 48.0204 0.6511
Sig 4: a pulse train 9.21 0.8182
Sig 5: white noise 4.0883 0.4339
Sig 6: a sinusoid 1.934 0.274

It can be seen from Table 1 that GI possesses lower values1

for DC, sinusoid and white noise signals while peaks at higher2

values in the cases of impulsive signals (Sig 2–4). The more are3

the impulses in the signal, the higher GI gets. In other words, GI4

value is found directly proportional with the number of pulses5

in the signal. GI reaches its highest value in the case of the6

pulse train signal (Sig 4), what makes it a perfect index for7

REBs fault detection since REBs faults produces a pulse train in8

the time domain. Although, kurtosis maintains lower values for9

sinusoids and white noise, its value is the highest for the single10

pulse and is lower for the pulse train. Kurtosis value is inversely11

proportional with the number of pulses in the signal what makes12

it an improper indicator for REBs faults. Considering that, SK is13

the kurtosis of the discrete Fourier transform of a signal [21].14

This numerically demonstrates that GI is more appropriate than15

kurtosis and SK for REBs fault detection. Another merit of GI is16

that it does not require many input arguments compared to the17

CK and the ICK.18

3. REBs fault detection challenges and the proposed method-19

ology20

The reviewed literature highlights the main difficulties en-21

countered during isolating the REBs fault’s repetitive impulses.22

These difficulties can be summarized and listed as follows:23

1. Existence of periodic interference and gearmesh signals 24

2. Masking by white noise and transmission path effects 25

3. Contamination with impulsive noise and impulsive outliers 26

In order to tackle these difficulties, Sawalhi et al. [1] proposed 27

a three-step approach combining autoregressive (AR) model- 28

based linear prediction filtering, minimum entropy deconvolution 29

(MED), and Morlet wavelet band-pass filtration using SK. How- 30

ever, the whole approach was based on maximizing the kurtosis 31

of the filtered signal which possesses low immunity to impulsive 32

noise and could lead to misleading diagnostics. 33

The objective of this manuscript is to establish an automated 34

and adaptive REBs fault identification framework based on suc- 35

cessive enhancements of the weak fault feature through three 36

filtration steps analogous to those in [1], but all are based on GI 37

which demonstrated to be more indicative for faulty REBs signals 38

than kurtosis and SK and proved to be immune to impulsive noise 39

and outliers while not requiring many input arguments compared 40

to the CK and the ICK. 41

The three-step filtration scheme is as follows; 42

1. Inverse autoregressive (IAR) linear prediction filtration to 43

remove the deterministic parts from the measured vibra- 44

tion signal (such as gears meshing frequencies and pe- 45

riodic interference) [1,22]. In this work, this is achieved 46

innovatively based on maximum GI. 47

2. Maximum Gini index deconvolution (MGID), as a novel 48

proposed improvement to the well-known MED technique, 49

to remove white noise and the effect of the transmission 50

path [22]. 51

3. GI-guided optimum Morlet wavelet band-pass filtration to 52

adaptively select and filter the optimum pass band for 53

demodulation. 54

The rest of this paper is structured as follows: Section 4 intro- 55

duces the IAR linear prediction filtration. Section 5 presents the 56

proposed MGID technique. GI-guided optimum Morlet wavelet 57

filtration procedure is explained in Section 6. Section 7 demon- 58

strates the effectiveness of the proposed scheme in early REB 59

fault detection and identification using three experimental signals 60

for three different fault locations (ball fault, inner and outer- 61

race faults). The three used signals are taken from the gearbox 62

test rig of the University of New South Wales (UNSW) and are 63

contaminated with gearmesh frequencies. Section 8 states the 64

main conclusions. 65

4. Inverse AR linear prediction filtration 66

In AR process modeling, the current value of the signal x(n) 67

is presented as a linear combination of its preceding values plus 68

a prediction error (which is a white noise process) e(n) [23], 69

according to Eq. (2). 70

x(n) = −

p∑
k=1

a(k)z−kx(n) + e(n) (2) 71

where p represents the number of previous terms (the model 72

order); a(k) are weighting coefficients; and z−k is the back-shift 73

operator. Hence: 74

x(n) = e(n)
/

1 +

p∑
k=1

a(k)z−k (3) 75

It is understood from Eq. (3) that x(n) can be generated by passing 76

white noise through an all-pole filter with transfer function [24]. 77

78

H(z) = 1
/

1 +

p∑
k=1

a(k)z−k (4) 79
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Then, the prediction-error filter (all-zero) has the transfer func-1

tion in Eq. (5) and its response is a white noise series e(n). In this2

configuration, the prediction-error filter (IAR filter) whitens the3

input signal, x(n), and is called a noise-whitening filter [24].4

A(z) = 1/H(z) = 1 +

p∑
k=1

a(k)z−k (5)5

If x(n) is the vibration signal to be analyzed, the AR model expects6

the deterministic part of the signal (gearmesh signal and the7

periodic components). However, it cannot adapt to the sudden8

impulses caused by a localized fault (e.g. a REB fault). Therefore,9

the fault impulses will be contained in the prediction error term10

e(n) of the AR model [1].11

Accordingly, the IAR filter removes the deterministic (AR)12

components of the signal and leaves the residual e(n) which13

consists of white noise and the impulsive feature of a REB fault14

of the input signal.15

The AR model parameters are obtained through Yule–Walker16

method using a Matlab R⃝ function called ‘‘aryule’’ which uses the17

Levinson–Durbin recursion (LDR) algorithm. The Akaike informa-18

tion criterion (AIC) [22] and kurtosis maximization of the residual19

signal [1] were used in the literature as criteria for selecting the20

optimum model order p. In this paper, GI maximization of the21

squared envelope (SE) of the residual signal (IAR filtered signal) is22

used in selecting the optimum model order to enhance impulses23

separation from the original signal while being less sensitive than24

kurtosis for impulsive noise and outliers.25

5. Maximum Gini Index Deconvolution (MGID)26

The IAR filter is phase blind, i.e. it cannot differentiate be-27

tween noise and impulses as both have broadband excitation and28

both will remain in the filtration result e(n) [22]. Based on the29

fact that REBs’ vibration signal is convolved by the transmission30

path function [25] MED was utilized in [1,22] to deconvolve the31

transmission path effect to enhance the impulsive component.32

MED is a system identification technique that was initially33

established by Wiggins [26] to assist in extracting reflectivity34

information in seismic data. It was proven to be effective in iso-35

lating the impulsive features from a combination of signals [26].36

MED optimizes the filter coefficients based on maximizing kur-37

tosis of the output signal of an inverse filter. MED is similar to38

IAR filtration (which uses second-order statistical properties) but39

with the use of Higher-order statistical properties [22].40

The AR model residual signal e(n) obtained by the IAR filter41

can be modeled as in Eq. (6). The signal g(n) models the fault42

impulses, W(n) models the noise, and the finite impulse response43

(FIR) filter h(n) models the transmission path effect [1].44

e(n) = (g(n) + W(n)) ∗ h(n) (6)45

The objective of the deconvolution is to find the coefficients of46

the inverse filter f (n) which attains h(n)∗ f (n) = δ(n− lm), where47

lm is a delay to make the inverse filter causal [1].48

McDonald [27] implemented an iterative procedure based49

on the work of Wiggins [26] to select the MED filter based50

on Kurtosis maximization of the MED filtered signal. McDonald51

et al. [15] proposed the maximum correlated kurtosis deconvolu-52

tion (MCKD), as an improvement for MED, based on the correlated53

kurtosis which counts for the periodic nature of the fault’s signal.54

Thus, it is less sensitive to outliers than kurtosis. MCKD encounter55

some challenges such as: the strict requirement for many input56

parameters and the intricate resampling process [28].57

In this work, we propose a novel improvement for MED, based58

on maximizing the GI of the filtered signal. The method is named59

maximum Gini index deconvolution (MGID). GI proved to be60

more proper for REBs fault detection than kurtosis and SK because 61

it shows less sensitivity to individual impulses and outliers. GI is 62

also an efficient alternative for CK because it does not require for 63

multi-input parameters and resampling. 64

The MGID filter is implemented by a method similar to the 65

iterative procedures in [22,27]. GI maximization of the squared 66

envelope (SE) of the filtered signal is selected as the fitness 67

function. This is done by changing the values of the coefficients of 68

the MGID filter and computing the GI. The optimization process 69

terminates when the change in the GI reaches a prespecified 70

value. In this work, this value is set to 0.01. 71

6. The GI-guided adaptive Morlet wavelet filter 72

The complex Morlet wavelet function is a complex Gaussian- 73

enveloped sinusoid [29], as shown in Eq. (7). Morlet wavelet’s 74

shape approximates the vibration response of a mechanical im- 75

pact [30]. 76

ψ (t) =

√
π

2 ln 2
· Fb · e−

π2 · F2b · t2

2 ln 2 · ei2π ·Fc ·t (7) 77

where Fc and Fb are the center frequency and the bandwidth of 78

Morlet wavelet, respectively. The continuous wavelet transforma- 79

tion can be understood as a band-pass filtration, hence, the Morlet 80

wavelet filter is simply a band-pass filter and its pass-band is de- 81

fined as [Fc − Fb/2, Fc + Fb/2] [29]. For a successful demodulation 82

process, the filter parameters Fc, Fb must be carefully selected to 83

get a filtered signal with maximum impulsiveness. 84

In this work, a heuristic inspired by the well-known particle 85

swarm optimization (PSO) algorithm is specially built to blindly 86

optimize the Morlet wavelet filter parameters based on maximiz- 87

ing the GI of the squared envelope (SE) of the wavelet-filtered 88

signal. The ranges of Fc and Fb are constrained by the conditions 89

stated in [29]. In the PSO algorithm, the swarm size was 50, and 90

the number of iterations was 20. 91

7. Experimental work and results 92

7.1. Test rig description 93

The experimental setup under consideration is the spur gear 94

test rig of the UNSW. It was previously used by Sawalhi [5] to 95

validate a simulated model for faulty REBs’ response in a gearbox 96

environment. In the setup, several faults of different types were 97

presented to several REBs. 98

The test was performed under a load of 50 N m, while the 99

shaft speed was set to 10 Hz. An accelerometer was located on 100

the defective bearing housing to gather vibration data with a 101

sampling frequency of 48 kHz. The test rig is depicted in Fig. 7. 102

The test bearing was double row self-aligning ball bearing (Koyo 103

1205). Three different types of faults are shown in Fig. 8. 104

7.2. Results and discussion 105

Three signals of the three different localized faults (ball, inner 106

race and outer race faults) have been used here to validate the 107

proposed method. The BCFs were estimated for the ball spin as 108

(BSF = 26.5 Hz), the inner race as (BPFI = 71.1 Hz), the outer race 109

as (BPFO = 48.9 Hz) and the fundamental train as (FTF = 4.1 Hz). 110

The signals were processed by the proposed filtration scheme 111

and the results are presented and discussed in the following 112

subsections. 113
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Fig. 7. UNSW gearbox test rig.

7.2.1. The Ball fault signal (Signal A)1

The time waveform and spectrum of the ball fault raw signal2

(Signal A) are shown in Fig. 9(a, b). The GI of the SE of the raw3

signal is 0.5029. It can be seen that REBs fault features cannot4

be detected either in the time domain or in the frequency do-5

main due to masking by the gearmesh frequencies. No impulsive6

behavior is detected in the time domain, Fig. 9(a). It is known7

that REBs faults at the very early stages excite high frequency8

vibration in both the ultrasound spike energy and the bearing res-9

onance frequencies regions of the vibration spectrum [31]. Even10

though, the spectrum in Fig. 9(b) does not show any frequency11

content in the high frequency region.12

IAR filtration is performed on the raw signal to eliminate13

the gearmesh frequencies. The optimum model order is selected14

based on maximizing the GI of the squared envelope (SE) of the15

IAR filtered signal and it is found to be 5 (Fig. 10). The SE of the16

IAR filtered signal has a GI of 0.7687. The IAR filtered signal in17

time domain is shown in Fig. 14(a). The gearmesh frequencies18

are removed and the impulses of the ball fault are revealed. The19

squared envelope spectrum (SES) of the IAR filtered signal is20

shown in Fig. 15(a), which shows a clear peak at twice the ball21

spin frequency (2 × BSF ) and its harmonics and sidebands with22

the shaft rotation frequency. At first sight, the SES could mislead23

the diagnosis towards inner race fault because the presence of24

sidebands with the shaft rotation frequency is a characteristic for25

inner race fault signals not for ball fault signals. However, the26

peak at (2 × BSF ) and its harmonics indicate the presence of a27

ball fault.28

The IAR filtered signal is then passed through the proposed29

MGID filter to remove any transmission path effects. The iterative30

filtration procedure is designed to maximize the GI of the SE of31

the deconvolved signal. The convergence of the MGID algorithm32

is shown in Fig. 11. The GI of the SE of the (IAR+MGID) filtered33

signal is 0.9072.34

Fig. 9. Signal A: (a) time waveform; (b) spectrum.

Fig. 10. Optimum IAR filter’s model order for Signal A.

Fig. 11. Convergence curve of the MGID algorithm for Signal A.

Fig. 12. Convergence curve of PSO of the Morlet wavelet filter for Signal A.

Fig. 8. Three different types of localized faults: (a) ball fault; (b) inner race fault; (c) outer race fault.
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Fig. 13. The optimum Morlet wavelet filter superimposed on the frequency
spectrum of the (IAR+MGID) filtered signal.

Fig. 14. Signal A filtration output: (a) IAR filtration output of the raw Signal
A; (b) MGID filtration output of the signal in ‘‘a’’; (c) Optimum Morlet wavelet
filtration output of the signal in ‘‘b’’.

Fig. 15. The SESs of: (a) the signal in Fig. 14(a), (b) the signal in Fig. 14(b), (c)
the signal in Fig. 14(c).

Fig. 13 shows the spectrum of the (IAR+MGID) filtered signal,1

which demonstrates a tremendous amplification of the ampli-2

tudes at the high frequency region (10–20 kHz). This conforms3

with the results of the power spectral analysis in [5], which4

showed a rise in the power spectral density corresponding to5

this frequency range in the case of the ball fault. The filtered6

signal in the time domain is shown in Fig. 14(b). The signal is7

denoised and the impulses clarity has been enhanced. The SES of8

the filtered signal is shown in Fig. 15(b). It does not show any9

further improvement beyond the resulted SES of the IAR filter10

alone because the fault impulses were originally well separated11

in the raw signal due to the relatively low shaft rotational speed.12

Finally, the output of the previous step is passed through an13

optimumMorlet wavelet filter whose parameters were optimized14

based on the maximization of the GI of the SE of the filtered15

signal. The convergence curve of PSO of the Morlet wavelet filter16

is shown in Fig. 12. The center frequency and bandwidth of the17

filter were 22.24 kHz and 980.36 Hz, respectively. Fig. 13 shows18

Fig. 16. Signal B: (a) time waveform; (b) spectrum.

Fig. 17. Signal B filtration output: (a) IAR filtration output of the raw Signal
B; (b) MGID filtration output of the signal in ‘‘a’’; (c) Optimum Morlet wavelet
filtration output of the signal in ‘‘b’’.

the optimumMorlet wavelet filter superimposed on the spectrum 19

of the output of the previous steps. The GI of the SE of the output 20

signal (after passing through the three filters) reaches 0.9712 21

which is a very high value compared to that of the raw signal. 22

The time waveform of the output signal is shown in Fig. 14(c). 23

The signal is highly denoised and the impulses are completely 24

isolated. The SES of the output signal is shown in Fig. 15(c) and 25

it is completely different from that of the two previous steps. It 26

resembles the characteristic shape of the SES of the ball fault sig- 27

nals [32] as: (a) it has a peak at the fundamental train frequency 28

(FTF ) and its harmonics, (b) it has a peak at the ball spin frequency 29

(BSF ) and its harmonics and sidebands with the (FTF ), (c) the 30

even harmonics of the BSF are dominant. The previous results 31

indicate the effectiveness of the proposed filtration scheme in the 32

detection of REBs incipient faults, fault location identification, and 33

hence the surveillance of REBs faults. For validation, the filtration 34

scheme was applied on an inner and outer race fault signals and 35

the results are presented and discussed in the following sections. 36

7.2.2. The inner race fault signal (Signal B) 37

The time waveform and spectrum of the inner race fault raw 38

signal (Signal B) are shown in Fig. 16(a, b). The GI of the SE of 39

the raw signal is 0.4948. There is no sign of REBs faults, and the 40

low frequency vibration is dominant. Fig. 17(a, b, c) demonstrates 41

the progressive enhancement in the impulses clarity as the raw 42

signal was passed through the three consecutive filters. The GI 43

of the SE of the signals in Fig. 17(a, b, c) are 0.7914, 0.9217, 44

0.9585, respectively. The time waveform of the output signal 45

in Fig. 17(c) has the impulses modulated by the shaft rotation 46

frequency which is a characteristic for the inner race faults. 47

One can diagnose an inner race fault just by looking at the SES 48

of the output signal in Fig. 18 as it shows: (a) peaks at the shaft 49

rotational frequency (fr ) and its harmonics, (b) peaks at the ball 50

passing inner race frequency BPFI and its harmonics up to the 51

sixth harmonic, and (c) clear sidebands with the shaft rotational 52

frequency. This confirms the case of an inner race fault because 53

in the final envelope analysis the detection of the modulating 54

effects (sidebands) are important to the diagnosis [2]. Hence, the 55

proposed filtration scheme successfully characterizes the inner 56

race fault and facilitates its detection. 57
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Fig. 18. The SES of the signal in Fig. 17(c).

Fig. 19. Signal C: (a) time waveform; (b) spectrum.

Fig. 20. Signal C filtration output: (a) IAR filtration output of the raw Signal
C; (b) MGID filtration output of the signal in ‘‘a’’; (c) Optimum Morlet wavelet
filtration output of the signal in ‘‘b’’.

7.2.3. The outer race fault signal (Signal C)1

The time waveform and spectrum of the outer race fault raw2

signal (Signal C) are shown in Fig. 19(a, b). The GI of the SE of3

the raw signal is 0.4989. There is no sign of REBs faults, and the4

low frequency vibration is dominant. Fig. 20(a, b, c) demonstrates5

the progressive enhancement in the impulses clarity as the raw6

signal was passed through the three consecutive filters. The GI of7

the SE of the signals in Fig. 20(a, b, c) were 0.7516, 0.8668, 0.9127,8

respectively. The resulted SES, as shown in Fig. 21, indicates the9

presence of an outer race fault as it shows peaks at the ball10

passing outer race frequency BPFO and its harmonics up to the11

sixth harmonic. So, the proposed filtration scheme helped to12

clearly identify the outer race fault.13

8. Conclusions14

Early REBs fault identification is an important practice in ma-15

chine health monitoring. Faults in early stage leave only weak16

features in the vibration signal so their detection is a hard task.17

Envelope analysis is considered as the typical technique to help18

solve this problem. Vibration signals are always interfered with19

components such as: periodic and gearmesh signals, white noise,20

impulsive noise and the transmission path effect. These interfer-21

ences obstruct a proper band selection for demodulation; thus,22

envelope spectra become irrelevant.23

Fig. 21. The SES of the signal in Fig. 20(c).

An automatic, three- step, GI-based, adaptive approach is pro- 24

posed in this paper to solve the mentioned problems to blindly 25

select the best demodulation band. GI is a recently introduced 26

impulsiveness measure in the field of REBs fault detection. The 27

results of a simulated study proved that GI is more proper for 28

REBs fault detection than kurtosis and SK. The three applied 29

consecutive filters are; IAR filtration, MGID and optimum Morlet 30

wavelet filtration. The three filters are guided and optimized 31

by GI. The effectiveness of the scheme is tested using three 32

experimental signals for different bearing fault locations; all are 33

contaminated with a gearmesh signal. Time waveforms aside to 34

SESs for the filtered signals are shown and carefully discussed. 35

The resulted filtered signals were greatly denoised and the fault 36

related impulses were successfully isolated. Bearing fault loca- 37

tions were clearly identified and the resulted SESs showed the 38

specific characteristic shapes for the corresponding fault loca- 39

tions. The results prove the high effectiveness of the proposed 40

filtration scheme in early REBs fault detection, location identi- 41

fication, and surveillance. They also confirm the suitability of 42

GI as a powerful criterion to guide the blind filtration process 43

accompanying envelope analysis in REBs fault detection, and its 44

superiority over kurtosis-derived indices. 45
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